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CONCLUSIONS 

 Calculated sources from the NNMF approach appear to be represent physiological sources (e.g.   

hemoglobin and porphyrin) and their concentration changes are in agreement with cervical         

dysplasia changes.   

 

 A machine learning algorithm (i.e. Lasso linear regression) improved the dysplasia prediction    

performance by combining source concentrations from both the reflectance and fluorescence spectra 

data.   

 

 2-D false color spectroscopy disease maps demonstrate the ability to quantify and spatially locate 

dysplasia cervical tissue.  

 

 These results offer the potential to reduce the number of false positive cases while maintaining a 

high enough detection rate necessary for primary screening, and may assist in identifying biopsy  

locations. 
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5. Lasso regression machine learning modeling is used to identify the combination of different 

source concentrations that best predict the amount of cervical dysplasia.  
 The Lasso is a shrinkage and selection method for linear regression that minimizes the sum of squared    

errors with a bound on the sum of the absolute values of the coefficients.   

 The quantitative prediction labels used in the Lasso model are 1 for normal points, 2 for CIN 1, 3 for CIN 

2, and 4 for CIN 3.   

 The point dataset is randomly subdivided into 60% training and 40% testing data to test for over fitting. 

 A receiver operating characteristic curve (ROC) analysis is done to determine the dysplasia tissue         

classification performance. 

 

6. Two dimensional (2-D) disease maps are created to spatially locate and quantify cervical    

dysplasia tissue using the Lasso regression results obtained from the NNMF concentrations. 
 Each subject's 2-D false color disease map is created from the Lasso regression results and the               

corresponding measurement location. 

 Finally, the 2-D disease maps are compared with cervical colposcopy images and biopsy results. 

 

RESULTS 
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INTRODUCTION 

 Current methods to detect and manage cervical pre-cancers often miss the disease and generate 

false positives. 

 This can lead to a delay in correctly diagnosing and over-treating cervical dysplasia.  

 Recent clinical trials with two year follow up have shown that colposcopy (i.e. current triage standard of 

care) can be inaccurate in determining the need for biopsies and locating appropriate biopsy sites.   

 

 Guided Therapeutics has developed a spectroscopic device to reduce the number of false positives 

while retaining the high true positive predictive rate.   

 Both reflectance and fluorescence spectroscopy are     

utilized to detect morphological and biochemical                  

abnormalities associated with cervical pre-cancer and   

cancer.   

 In a seven-center pivotal study, the device demonstrated 

its potential as a cost effective and efficient modality for 

the early detection of moderate and severe cervical          

intraepithelial neoplasia (CIN) disease in women at risk for 

cervical disease, while at the same time potentially          

reducing the number of colposcopies and biopsies from 

normal and benign cervices. 

 

 

 

 Traditional supervised and unsupervised methods of analyzing fluorescence and reflectance spectra 

data have difficulty recovering physiological information.   

 Supervised un-mixing methods require knowledge about the reflectance/fluorescence spectral patterns of 

the constituent materials.   

 Reflectance and fluorescence spectral data are non-negative by nature, and spectral sources don’t always 

appear to be statistically independent (e.g. collagen and elastin fluorescence).   

 However, principal component analysis assumes that the underlying sources are uncorrelated and       

Gaussian, and the resulting sources/concentrations can be negative. 

 Also independent component analysis assumes that the sources are statistically independent, and the 

sources/concentrations can be negative.   

 

 Therefore, non-negative matrix factorization (NNMF) is chosen to analyze the spectral data, since 

it only assumes that the source and mixture data are non-negative.  

 

METHODS 

1.  Clinical colposcopist expert and biopsy results are used to create a point-by-point diagnosis. 
 The diagnosis categories include: normal (e.g. normal squamous, normal columnar), CIN 1 (Grade 1), CIN 

2 (Grade 2), CIN 3 (Grade 3), or CIN 2+ (either CIN 2 or CIN3).   

 

2.  Measurement points and subjects are excluded if they were taken over non-cervical tissue, 

had excessive blood or mucus, had a specular reflection artifact (CCD saturation), or had an 

unknown/uncertain disease classification.   

 

3. Spectral measurements are calibrated to account for any instrument and subject differences. 
 Calibration sources are used to calibrate the system’s spectra response and perform wavelength calibration. 

 Subject differences are calibrated by dividing the spectra with the mean intensity over all wavelengths. 

 

4. A NNMF approach is used to blindly decompose reflectance and fluorescence spectra into a 

set of constituent source spectra curves and concentrations. 
 NNMF approximates a non-negative matrix with the product of two other non-negative matrices: X≈A*S  

where X is the measured spectral data matrix, S is an unknown spectral source matrix,  and A is an         

unknown mixing matrix. 

 Matrices S and A are chosen to minimize the root-mean-squared residual (RMSR) between X and A*S.   

 NNMF algorithm is an iterative approach and does not reach a unique solution.   
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Figure 2.  Non-negative matrix factorization approach to construct constituent source spectra.  
(a) shows a fluorescence source signal obtained using a single NNMF source model.  (b) shows the           

calculated NNMF source signals obtained using a 3 source model.  (c) shows how the RMSR decreases until 

it  becomes stable as the number of factors (sources) included in the model increases.  

 

With a 3 source model, the source spectral signals appear to represent physiological fluorophores   

often present in cervical epithelium tissue (e.g. NADH, FAD/collagen, porphyrin).   

Figure 1.  Spectroscopy measurement device   
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Figure 4.  Probability distribution function (PDF) estimates for normal and dysplastic tissue. 
 The PDF curves represent the following different cervical tissue: normal (blue), CIN 1 (green), CIN 2 

(red), and CIN 3 (cyan).  (a) shows the PDF estimates using the reflectance source concentrations that   

correspond to the Hb source signal shown in Figure 3 (a).  (b) shows the PDF curves using concentrations   

obtained from the fluorescence NNMF signal that appears to be a porphyrin spectrum shown in Figure 3 

(b).   

 

NNMF source concentrations behave similar as organic compound concentrations in the cervix.  
 Figure 4 (a) results agree with the widely accepted knowledge that as dysplasia increases, the amount of 

angiogenesis increases and thus the HbO2 absorption (reflectance) increases (decreases).  

 Higher porphyrin concentrations are well known to be present in pre-cancererous tissue.   

 Other prevalent cervical tissue fluorophore concentrations (not shown here) behave as expected as the level 

of dysplasia increases: NADH increases, FAD decreases, and collagen decreases. 
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Figure 3.  Comparison between derived and actual source reflectance and fluorescence spectra. 
(a) shows the reflection NNMF source signal that best predicts the dysplasia by itself.  (b) shows the best 

fluorescence source signal that predicts cervical dysplasia by itself.  (c) shows a hemoglobin (Hb) and       

oxy-hemoglobin (HbO2) absorption spectrum that was measured by Scott Prahl at the Oregon Medical Laser  

Center.   (d) shows an actual porphyrin fluorophore spectra signal (i.e. protoporphyrin) at the same excitation 

wavelength as (b) that was measured by DaCosta at the University of Toronto.    

 

NNMF sources appear to characterize physiological cervical tissue spectra. 
 The behavior of the reflectance spectra is opposite of the absorption spectrum, and you can see the       

characteristic HbO2 absorption peaks as valleys in the reflectance NNMF source signal.   

 Porphyrin fluorescence spectrum has two peaks near 640nm and 700nm, and these two peaks appear to be 

also present in the fluorescence NNMF source signal. 
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Figure 6.  Comparison between colposcopy image and biopsy with 2-D spectroscopy disease maps 

obtained from the Lasso regression results. 
Biopsy spatial locations are shown in the colposcopy images (left images) by an "x" indicator.  (a)            

Colposcopy image with biopsy diagnosed as normal.  (b)  2-D spectroscopy disease map showing entire   

cervix as normal.  (c) Colposcopy image with biopsy diagnosed as CIN 3 and normal. (d) 2-D spectroscopy   

disease map indicating where cervical dysplasia tissue exists.   

 

The corresponding 2-D disease maps Figure 6 (b) and (d) correctly identify the biopsied normal and 

dysplasia cervical tissue, and could have correctly been used to determine where to take a biopsy. 

Figure 5.  Lasso probability distribution functions and receiver operating characteristic curves. 
(a) shows the PDF curves of the normal, CIN 1, CIN 2, and CIN 3 groups indicating higher values best     

predict dysplasia tissue.  (b) shows classification ROC curves to distinguish CIN 1 and CIN 2+ from normal   

tissue.   

 

Lasso linear regression combines NNMF source concentration information to improve cervical   

dysplasia predication and classification performance.  
 There are 18 different features selected after performing the Lasso regression procedure on only the    

training data. 

 Testing dataset had a fitting error that is less than 0.1% different than the training dataset. 

 ROC area under the curve (AUC) for CIN 1 and CIN 2+ classification is 0.75 and 0.86  

 Detection specificity at 95% sensitivity (spec@95) for CIN 1 and CIN 2+ tissue is 30% and 58%.   

 Sensitivity at 70% specificity (sens@70) for CIN 1 and CIN 2+ tissue is 70% and 87%.   
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